Pemanfaatan Molasses Pada Rancangan Teknologi Constructed Wetland-Microbial Fuel Cell (CW-MFC) dalam Pereduksi Bakteri Patogen dan Aplikasi Biosensor Limbah Greywater sebagai Sumber Pengaplikasian Flushing Water
Main Article Content
Abstract
Simple greywater waste treatment is considered less effective in processing water sources into clean water. Most of the greywater waste flows without maintenance through a drainage system that flows into the river. The consequences that can arise from the discharge of greywater waste into rivers, among others, cause living things in the river to die, and cause sources of diseases such as cholera, dysentery, and other diseases. so it is necessary to do greywater waste treatment, one of them is constructed wetland (CW) with biosensors from microbial fuel cell. Microbial Fuel Cell (MFC) is a device that generates electricity from the microbial degradation process of organic and inorganic substrates. Constructed Wetland (CW) is a technology for treating various wastewater such as domestic waste, industrial drainage, agricultural wastewater, and leachate. In the CW system, the process of removing pollutants can be done by adding organic substrates to increase the denitrification process. One type of organic substrate that has a high enough absorption potential of pollutants is molasses. Molasses is sugar cane molasses waste which contains abundant bacteria. So that molasses supports the performance of the MFC system as a bioelectrochemical as well as can be applied as a biosensor. Biosensor as a monitoring tool during the processing. So that it can reduce the cost of electricity and improve the performance of management and monitoring of treated greywater waste. Waste that has been treated will be used in the application of flushing water. Seeing the use of flushing water is expensive and only used for fecal transportation. Therefore, the authors offer the idea titled the use of molasses in the design of Constructed Wetland-Microbial Fuel Cell (CW-MFC) technology in reducing pathogenic bacteria and the application of greywater waste biosensors as a source of flushing water application.
Article Details
References
Araneda, I., Tapia, N. F., Lizama Allende, K., & Vargas, I. T. (2018). Constructed wetland-microbial fuel cells for sustainable greywater treatment. Water, 10(7), 940. (doi: 10.3390/w10070940)
Bullen, R. A., Arnot, T. C., Lakeman, J. B., & Walsh, F. C. (2006). Biofuel cells and their development. Biosensors and Bioelectronics, 21(11), 2015-2045. (doi: 10.1016/j.bios.2006.01.030)
Cheng, K. Y. (2009). Bioelectrochemical systems for energy recovery from wastewater (Doctoral dissertation, Murdoch University).
Crolla, A. M., & Kinsley, C. B. (2002, September). Use of kinetic models to evaluate the performance of a free water surface constructed wetland treating farmstead runoff. In Proceedings of the Eighth International Conference on Wetland Systems for Water Pollution Control, International Water Association, Arusha, Tanzania (pp. 16-19). (doi: 10.3390/w9060397)
Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., & Liu, R. (2015). A review of a recently emerged technology: constructed wetland–microbial fuel cells. Water research, 85, 38-45. (doi: 10.1016/j.watres.2015.08.016)
Drizo, A., Frost, C. A., Grace, J., & Smith, K. A. (1999). Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Research,33(17), 3595-3602. (doi: 10.1080/00288231003685843)
Eriksson, E., Auffarth, K., Henze, M., & Ledin, A. (2002). Characteristics of grey wastewater. Urban water, 4(1), 85-104. (doi: 10.1016/S1462-0758(01)00064-4)
Fang, Z., Song, H. L., Cang, N., & Li, X. N. (2013). Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresource technology, 144, 165-171. (doi: 10.1016/j.biortech.2013.06.073)
Firdayati, M., Indiyani, A., Prihandrijanti, M., & Otterpohl, R. (2015). Greywater In Indonesia: Characteristic And Treatment Systems. Jurnal Teknik Lingkungan, 21(2), 98-114. (doi: 10.5614%2Fjtl.2015.21.2.1)
Guo, K., Hassett, D. J., & Gu, T. (2012). Microbial fuel cells: electricity generation from organic wastes by microbes. Chapter, 9, 162-189.
Hua, T., & Haynes, R. J. (2016). Constructed wetlands: fundamental processes and mechanisms for heavy metal removal from wastewater streams. International Journal of Environmental Engineering, 8(2-3), 148-178. (doi: 10.22093/wwj.2019.164326.2798)
Hua, G., Kong, J., Ji, Y., & Li, M. (2018). Influence of clogging and resting processes on flow patterns in vertical flow constructed wetlands. Science of The Total Environment, 621, 1142-1150. (doi: 10.1016/j.scitotenv.2017.10.113)
Oodally, A., Gulamhussein, M., & Randall, D. G. (2019). Investigating the performance of constructed wetland microbial fuel cells using three indigenous South African wetland plants. Journal of Water Process Engineering, 32, 100930. (doi: 10.1016/j.jwpe.2019.100930)
Inayati, N. S., Aminin, A. L., & Suyati, L. (2015). The Bioelectricity of Tofu Whey in a Microbial Fuel Cell System with Lactobacillus bulgaricus. Jurnal Sains dan Matematika, 23(1), 32-38. (doi: 10.20884/1.mib.2020.37.2.1147)
Ismawati, N., Aminin, A. L., & Suyati, L. (2015). Whey Tahu sebagai Penghasil Bio Elektrisitas pada Sistem Microbial Fuel Cell dengan Lactobacillus Plantarum. JURNAL SAINS DAN MATEMATIKA, 23(2), 43-49.
Kadlec, R. & Knight, R. (1996). Treatment Wetlands. CRC Press/ Lewis Publishers, Boca Raton, Florida
Kadlec, R. H., & Wallace, S. (2008). Treatment wetlands. CRC press. Li, W. W., & Sheng, G. P. (2011). Microbial fuel cells in power generation and extended applications. In Biotechnology in China III: Biofuels and Bioenergy (pp. 165-197). Springer, Berlin, Heidelberg.
Liu, B., Liu, X. B., Wang, C., Li, Y. S., Jin, J., & Herbert, S. J. (2010). Soybean yield and yield component distribution across the main axis in response to light enrichment and shading under different densities. Plant, Soil and Environment, 56(8), 384-392. (doi: 10.17221/189/2009-PSE)
Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. TRENDS in Microbiology, 14(12), 512-518. (doi: 10.1016/j.tim.2006.10.003)
Manjrekar, Y., Kakkar, S., & Durve-Gupta, A. (2018). Bio-Electricity Generation Using Kitchen Waste And Molasses Powered MFC. (ISSN : 2394-4099).
Ottoson, J., & Stenström, T. A. (2003). Faecal contamination of greywater and associated microbial risks. Water research, 37(3), 645-655. (doi: 10.1016/S0043-1354(02)00352-4)
Pratiwi NTM., Haryadi S., Ayu IP., Apriyadi T., Iswantari A., Wulandari D, (2019), Management of Organic Matter Content From Proling Laboratory Waste Water Using Several Combinations of Bioremediation Agent, Jurnal Biologi Indonesia, halaman. 89-95.
Putri, M. H., Nurjazuli, N., & Dangiran, H. L. (2016). Perbedaan Efektivitas Constructed Wetlands subsurface Flow System Dan Free Water Surface Pada tanaman Cattail Untuk Menurunkan Bod, Cod Dan Fosfat Limbah Laundry Di Kelurahan Tembalang, Kota Semarang. Jurnal Kesehatan Masyarakat (e-Journal), 4(5), 19-26. (ISSN: 1412-1867)
Putri, O N, 2007. “Perencanaan Constructed Wetland untuk Pengolahan Air Limbah Domestik (Studi Kasus : Saluran Sidomulyo)”. Tugas Akhir. Surabaya : Jurusan Teknik Lingkungan ITS.
Qomariyah, S., Sobriyah, S., Koosdaryani, K., & Muttaqien, A. Y. (2017). LAHAN BASAH BUATAN SEBAGAI PENGOLAH LIMBAH CAIR DAN PENYEDIA AIR NON-KONSUMSI. Jurnal Riset Rekayasa Sipil, 1(1), 25-32. (ISSN: 2579-7999)
Rasmussen, G., P.D. Jenssen and L. Westlie. (1996). Greywater treatment options. In: J. Staudenmann, et al. ed. Recycling the resource: Proceedings of the second international conference on ecological engineering for wastewater treatment, Waedenswil, Switzerland, Sept. 18-22 1995. Env. Research volumes 5-6,Transtec, pp. 215-220.
Reed, S. C., Crites, R. W., & Middlebrooks, E. J. (1995). Natural systems for waste management and treatment (No. Ed. 2). McGraw-Hill, Inc.
Rozendal, R. A., Hamelers, H. V., Rabaey, K., Keller, J., & Buisman, C. J. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in biotechnology, 26(8), 450-459. (doi: 10.1016/j.tibtech.2008.04.008)
Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: from fundamentals to applications. A review. Journal of power sources, 356, 225-244. (doi: 10.1016/j.jpowsour.2017.03.109)
Staudenmann, J., Schoenborn, A., & Etnier, C. (1996, July). Recycling the resource. In Ecological Engineering for Wastewater Treatment. Proceedings of the second int. conf. on Ecological Engineering for Wastewater Treatment, Wädenswil.
Vinnerås, B. (2002). Possibilities for sustainable nutrient recycling by faecal separation combined with urine (Vol. 353).
Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecological Engineering, 37(1), 70-89. (doi: 10.1016/j.ecoleng.2009.08.003)
Vymazal J, Brix H, Cooper P F, Green M B, Haberl R, (1998). Constructed Wetlands for Wastewater Treatment in Europe. Leiden: Backhuys Publishers. (doi: 10.1002/iroh.19980830517)
Vymazal, J. (2002). The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecological Engineering, 18(5), 633-646. (doi: 10.1016/S0925-8574(02)00025-3)
Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3), 530-549. (doi: 10.3390/w2030530)
Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., ... & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource technology, 175, 594-601. (doi: 10.1016/j.biortech.2014.10.068)
World Health Organization. (2011). United States Agency for International Development. Joint position paper on the provision of mobility devices in less resourced settings.
Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., & Hu, Y. (2013). Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chemical Engineering Journal, 229, 364-370. (doi: 10.1016/j.cej.2013.06.023.